
15-112 Fundamentals of
Programming

Today

Regular Expressions

Background

We have written code where we were
looking for specific patterns in a text
How have we done it so far?
Go through the string that holds the text

and look for patterns
But there is a better way of doing this

Regular Expressions

A mechanism to specify a pattern that you
are looking for
For Example:
 How do we check if an email address is valid
 srazak@cmu.edu
 srazak@qatar.cmu.edu

A group of
characters or

numbers
@

One or more of
pattern - chars
followed by a .

edu or com or org
or net

Regular Expressions
srazak@qatar.cmu.edu

We should be able to say
 Make sure that we have a group of chars

followed by a single @ followed by one or
more of the sequence [chars.] followed by a
“com” or “net” or “org” or “edu”

A group of
characters or

numbers
@

One or more of
pattern - chars
followed by a .

edu or com or org
or net

Regular Expressions

Regular expressions allow us to specify
patterns that we want to look for in a string
import re – to use Regular expressions
Create a pattern that you want to search
Run the pattern on the string

A simple Example

“\d” represents pattern that matches any
digit, e.g. “1”, “2”, “5”, etc.
Example

s = "You are all number 1"
pattern = "\d"
result = re.search(pattern,s)
print (result.group())

 Group returns None if pattern not found

A simple Example (contd.)

“\d” represents pattern that matches any
digit, e.g. “1”, “2”, “5”, etc.
Example

s = "You are all number 1"
pattern = "\d"
if re.search(pattern,s):

print (“A number was found”)

A simple Example (contd.)

“\d” represents pattern that matches any
digit, e.g. “1”, “2”, “5”, etc.
Example

s = "You are all number 1"
pattern = "\d"
result = re.search(pattern,s)
print result.group()
print result.start()
print result.end()
print result.span()

Regular Expressions Syntax

“\d” represents any digit, e.g. “1”, “2”, “9”,
etc.
“\D” represents any non-digit, e.g. “a”, “b”,

“-”
“\w” represents any alphanumeric

characters, e.g. “a”, “1”, “z”, “0”
“\W” represents any non-alphanumeric

character, “-”, “@”

An other Example
s = "2B! or not 2B!"
r = re.search("\d",s)
print r.group()

r = re.search("\D",s)
print r.group()

r = re.search("\w",s)
print r.group()

r = re.search("\W",s)
print r.group()

 “\d” represents any digit,
e.g. “1”, “2”, “9”, etc.

 “\D” represents any non-
digit, e.g. “a”, “b”, “-”

 “\w” represents any
alphanumeric characters,
e.g. “a”, “1”, “z”, “0”

 “\W” represents any non-
alphanumeric character, “-
”, “@”

Regular Expression Syntax

“\s” represents whitespace, e.g. space,
tab, newline
“\S” represents non-whitespace
Most other characters represent

themselves, e.g. “a” represents “a”, “-”
represents “-”, “1” represents “1”

Syntax Continued

Sequence of characters represent
sequence of corresponding characters
 “\d\d” represents two consecutive digits, e.g.

“12”, “33”, etc.
 “abc” represents “abc”
 “\w\w\s\w” represents two alphanumeric

charcters, followed by space, followed by one
alphanumeric character, e.g. “ab c”, “12 e”
etc.

Syntax Continued

Any of the specified characters: []
 “[abc]” represents “a” or “b” or “c”
 “[\dabc]” represents any digit or “a” or “b” or “c”
 Use of “–” in “[]”

+ “[a-z]” represents any lower-case alphabet
+ “[A-Z]” represents any upper-case alphabet
+ “[a-zA-Z]” represents any alphabet
+ “[0-9]” represents any digit
+ “[e-yF-Z0-9]” represents e to y or F to Z or 0 to 9

Syntax Continued

None of the specified characters: []̂
 “[^abc]” represents any character except “a” or

“b” or “c”
 “[^\dabc]” represents any character except any

digit or “a” or “b” or “c”
 Use of “-” in “[^]”:

+ “[^a-z]” represents any character except any lower-case alphabet
+ “[^A-Z]” represents any character except any upper-case alphabet
+ “[^a-zA-Z]” represents any character except any alphabet
+ “[^0-9]” represents any character except any digit
+ “[^e-yF-Z0-9]” represents any character except e to y or F to Z or 0 to 9

Syntax Continued

Metacharacter: “.”
 Matches any single character except newline.
 “a.b” matches “a” followed by anyone character followed

by “b”

Syntax Continued

Metacharacter: “*”
 “a*” represents zero or more “a”, e.g. “”, “a”, “aa”, “aaa”
 “b*” represents zero or more “b”, e.g. “”, “b”, “bb”, “bbb”
 “\d*” represents zero or more digits, e.g. “”, “1”, “2”, “2344”
 “\D*” represents zero or more non-digits
 “\w*” represents zero or more alphanumeric characters
 “\s*” represents zero or more whitespaces
 “[A-Z]*” represents zero or more upper-case alphabets

Syntax Continued

Metacharacter: “+”
 “a+” represents one or more “a”, e.g. “a”, “aa”, “aaa”
 “b+” represents one or more “b”, e.g. “b”, “bb”, “bbb”
 “\d+” represents one or more digits, e.g. “1”, “2”, “23”,

“23442”, etc.
 “\D+” represents one or more non-digits
 “\w+” represents one or more alphanumeric

characters
 “\s+” represents one or more whitespaces
 “[A-Z]+” represents one or more upper-case

alphabets

Alternation

You can search of alternate regexes by
using “|” operator

import re
reg = "cat|dog"
s = "the cat ate the mouse"
s2 = "the dog ate the cat"
re.search(reg,s).group()
re.search(reg,s2).group()

Groups

You can specify groups of string matches
by using ()
 Parentheses group the regex between them.

They capture the text matched by the regex
inside them into a numbered.

Now try it all out!

Most phone numbers in us are written in
the format:

(xnn)nnn-nnnn
where n can be any digit and x is any non-zero digit

Write a function that takes as input a string and returns
True if the string represents a valid phone number

Write a python program that reads a phone number,
checks if the number is valid and keeps asking the user
for a phone number until a valid format is entered.

Regular Expressions Cheat Sheet
. Any character except newline
a The character a
ab The string ab
a* 0 or more a's
\ Escapes special character
* 0 or more
+ 1 or more
? 0 or 1
{2} Exactly 2
{2, 5} Between 2 and 5
{2,} 2 or more
(,5} Up to 5

 [ab-d] One character of: a, b, c, d
 [^ab-d] One character except: a, b,

c, d
 \d One digit
 \D One non-digit
 \s One whitespace
 \S One non-whitespace
 \w represents any alphanumeric

characters, e.g. “a”, “1”, “z”, “0”
 \W represents any non-

alphanumeric character, “-”, “@”

	15-112 Fundamentals of Programming
	Today
	Background
	Regular Expressions
	Regular Expressions
	Regular Expressions
	A simple Example
	A simple Example (contd.)
	A simple Example (contd.)
	Regular Expressions Syntax
	An other Example
	Regular Expression Syntax
	Syntax Continued
	Syntax Continued
	Syntax Continued
	Syntax Continued
	Syntax Continued
	Syntax Continued
	Alternation
	Groups
	Now try it all out!
	Regular Expressions Cheat Sheet

